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Béatrice Bussery-Honvault*
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Eighteen spin-orbit states are generated from the open-shell open-shell Si(3P) + OH(X2Π) interacting system.
We present here the behavior of the associated long-range intermolecular potentials, following a multipolar
expansion of the Coulombic interaction treated up to second order of the perturbation theory, giving rise to
a series of terms varying in R-n. In the present work, we have considered the electrostatic dipole-quadrupole
(n ) 4) and quadrupole-quadrupole (n ) 5) interactions, as well as the dipole-induced dipole-induced
dispersion (n ) 6) and dipole-dipole-induced induction (n ) 6) contributions. The diatomic OH is kept
fixed at its ground state-averaged distance, (r)V)0 ) 1.865 bohr, so that the long-range potentials are two-
dimensional potential energy surfaces (PESs) that depend on the intermolecular distance R and on the bending
angle γ ) ∠SiGH, where G represents the mass center of OH. From the calculated properties of the monomers,
such as the dipole and quadrupole moments and static and dynamic polarizabilities, we have determined and
tabulated the long-range coefficients of the multipolar expansion of the potentials for each matrix elements.
The isolated monomer spin-orbit splittings have been included in the final matrix, whose diagonalization
gives rise to 18 adiabatic potentials. Then, the adiabatic states have been compared to potential energies
given by supermolecular ab initio calculations resulting in a general good overall agreement.

I. Introduction

Studies of the reactions that lead to the formation of SiO
molecules are necessary to understand the interstellar chemistry
of silicon. The SiO molecule is largely observed in molecular
outglows surrounding stars during their formation, and it is used
as a spectroscopic probe of shocked regions.1,2 Models suggest
that the interstellar production of gas phase SiO occurs via
reactions of ground state silicon, which is released from grain
cores by local shocks, with either O2 or OH radicals.3,4 But while
the reaction between Si and O2 has been studied both
experimentally4,5 and theoretically,6,7 there exist no comparable
studies of the formation reaction of SiO from Si and OH. The
latter reaction is relevant to the characterization of SiO formation
processes occurring at temperatures corresponding to the warm
shocked layers (on the order of 100 K) and the cool postshock
flow (on the order of 10 K). The Si + OH reaction is also
relevant to the formation of the HSiO-SiOH isomeric system,8

which is the third-row analog of the HCO-COH system that
we have previously examined.9-13 Both of the isomers are
possible reactive intermediates in chemical vapor deposition
processes and plausible candidates for astronomical detection
(as has been the case of HCO14).

Experiments involving two radical species have proven to
be difficult to perform,15-18 particularly in the low temperature
range relevant to interstellar chemistry. A theoretical approach
obviates the experimental difficulties and is well-suited to
modeling the reaction at low temperature. The low temperature

condition limits reactions to those that occur without a potential
barrier for the optimal angle of approach, and this is hopefully
the case for most radical-radical collisions. In such scenarios
it is important that the long-range part of the potential energy
surfaces be accurately described since it is this part that governs
the reactivity at low temperature. Here is the purpose of this
paper. At large separations, the overlap of the wave functions
corresponding to the two interacting species can be neglected.
The interaction potential operator can therefore be written as a
multipole expansion, which leads to potential matrix elements
that are expressed in terms of inverse powers of the intermo-
lecular distance R. The coefficients of such an expansion are
then valuable quantities for accurately predicting the asymptotic
behavior of the potentials. The general approach, however, is
complicated by the fact that the Si(3P) + OH(X2Π) system
consists of two radicals and in such systems a large number of
states arise from the interaction between degenerate species. This
situation was encountered previously with the isoelectronic C(3P)
+ OH(X2Π) system,9 in which 18 states arise from the
interaction when one includes relativistic effects, or 12 states
if one neglects the spin-orbit fine structure. The fine structure
splittings, however, can greatly influence the reaction kinetics
because transitions may occur among the multiple states, and
the behavior of the potentials differs markedly from the
nonrelativistic case. In general, the initial states populations are
presumed to partition adiabatically onto reactive and nonreactive
surfaces. The spin-orbit contribution is included through an
electronic partition factor that accounts for the relative popula-
tion of the reactive states,6,11,19 but this approach assumes that
the potential remains unchanged from the nonrelativistic case.
In this paper we seek to address the problem of accurately
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describing the long-range potentials by first presenting the
behavior of the 12 potentials resulting from the Si(3P) +
OH(X2Π) interaction. We next demonstrate how these long-
range potentials give rise to 18 relativistic states when the
spin-orbit interaction is included.

After a brief introduction of the theoretical model, we present
in section III the evaluation of the monomer properties that are
used in the calculation of the long-range coefficients whose
numerical values are given in section IV. We discuss in section
V the behavior of the long-range potentials with or without
inclusion of the spin-orbit splittings.

II. Theoretical Model

The long-range potentials are described by the perturbation
theory up to second order by using a two-center expansion of
the intermolecular Coulombic potential. For calculations de-
scribing interactions over large intermolecular distances, a
multipolar expansion of the Coulombic operator, as given by
eq 1 of ref 9, can be used in good approximation, resulting in
potential energies represented by a series of terms varying in
R-n. The first-order perturbation yields electrostatic energies that
include the permanent multipole moments of the monomers,
which in the present case is described by the quadrupole-dipole
and quadrupole-quadrupole interactions only, and the resultant
potential matrix elements vary as R-4 and R-5, respectively. The
second-order perturbation gives rise to the dispersion and the
induction energies involving induced multipole moments, and
this is truncated to terms in R-6. Since the long-range interac-
tions are determined by intrinsic properties of each monomer,
such as the permanent multipole moments and static and
dynamic polarizabilities, these quantities must be evaluated with
a good accuracy. To describe the long-range part of such an
atom-diatom system, we employed the usual set of Jacobi
coordinates, i.e., the intermolecular separation R between the
silicon atom and the OH center-of-mass, the OH internuclear
distance r, and the angle γ between the two vectors R and r,
where γ ) 0° corresponds to linear OHSi and γ ) 180° to
linear SiOH. The OH internuclear distance r has been kept fixed
at its ground vibrational state averaged distance (r)V)0 ) 1.865
a0, and, thus, we are actually dealing with two-dimensional PESs
matrix elements, depending on R and γ only. The formalism
employed to evaluate the electrostatic, induction, and dispersion
energies for the interaction between an open-shell atom and an
open-shell diatomic has already been described in ref 9 and will
not be repeated here. Furthermore, as the ground state silicon
atom Si(3P) is isoelectronic to the ground state carbon atom
C(3P), the use of the latter formalism for the Si + OH case will
not differ from the C + OH case treated in ref 9.

For the electrostatic energy, eq 5 of ref 9 is used to evaluate
the long-range coefficients in the uncoupled basis, and eq 4
to evaluate those coefficients in the coupled basis. In present
work, we have considered the dipole-quadrupole and
quadrupole-quadrupole interactions only in the electrostatic
energy. In such a case, the electrostatic energy relies on the
knowledge of the dipole and quadrupole moments of OH,
and of the quadrupole moment of Si. Expressions for the
dispersion long-range coefficients are given in eqs 8 and 9
of ref 9 in the coupled and uncoupled basis, respectively,
and in eqs 11 and 12 for the induction long-range coefficients.
In the present work, we have considered the dipole-induced
dipole-induced interactions only in the dispersion energy,
and the dipole-dipole-induced contribution only in the
induction energy. The evaluation of the long-range coef-
ficients thus relies on the knowledge of the dynamic dipole

polarizabilities of Si and OH for the dispersion contribution,
and on the knowledge of the dipole moment of OH and of
the static dipole polarizabilities of Si for the induction
contribution.

III. Permanent Multipole Moments and Static and
Dynamic Polarizabilities

To estimate error bars on the long-range interaction coef-
ficients calculated in the present work, we have used two
different sets of values for the monomers properties that are
required to evaluate these coefficients: the dipole moment of
OH and, for Si and OH, the quadrupole moments and the static
and dynamic dipole polarizabilities. The first set (called set A)
includes our presently calculated values by means of the Dalton
ab initio quantum chemistry code20 and the following compu-
tational scheme.

The permanent multipole moments of Si and OH have been
calculated as the expectation values of Cartesian multipole
moment operators with CASSCF electronic wave functions.
The CASSCF wave functions were generated by distributing
four electrons among 13 orbitals (3s, 3p, 3d, 4s, and 4p) for
Si, and 7 electrons among 9 orbitals (2-6σ and 1-2π)
for OH. The inner-shell orbitals (1s, 2s, and 2p for Si, 1σ
for OH) were kept frozen in their form obtained from ROHF
calculations. The aug-cc-pVQZ and aug-cc-pV5Z atomic
basis sets were employed for Si and OH, respectively. From
this scheme, we obtained matrix elements of the electric
dipole operator µz and traceless quadrupole moments Θuu,
with u ) {x, y, z}, for each atomic and molecular substate
of definite symmetry (within the D2h and C2V point groups
for Si and OH, respectively). Hereafter, these states are
labeled ||ML|(〉 for Si and ||Λ|(〉 for OH, where ( stands for
the symmetry of the electronic wave function with respect
to σxz, the reflection through the xz plane. We report in Table
1 the permanent multipole moments obtained for Si and OH
together with other literature values. The values of Table 1
correspond to matrix elements of the spherical multipole
moment operators Qlm in the basis sets |ML ) 0, (1〉 for Si(3P)
and |Λ ) (1〉 for OH(X2Π), which are the values required
to evaluate the interaction coefficients. For Si, we report the
quadrupole moment matrix element Q20 ≡ (0|Q20|0〉. This is
the unique independent component and the other nonzero
matrix elements 〈ML|Qlm|ML′ 〉 are easily obtained by means
of the Wigner-Eckart theorem. For OH, we report the matrix
elements of the dipole moment Q10 ≡ 〈(1|Q10|(1〉 and
quadrupole moments Q20 ≡ 〈(1|Q20|(1〉 and Q2(2 ≡
〈(1|Q2(2|-1〉, which are the only nonzero matrix elements.

TABLE 1: Static Multipole Moments (in au) for Si(3P) and
OH(X2Π)

Si(3P) OH(X2Π)

Q1
0 0.6563,a 0.64628b

0.651,c, d 0.6545,e 0.6512f

Q2
0 3.3245,a 3.34g 1.3136,a 1.30827b

3.691,h 3.297i 1.35,c 1.3939e

Q2
(2 -1.2528,a -1.21539b,j

-1.070,c -1.1825e

a Present work. For OH, calculations are done at the mean
geometry (r)V)0 ) 1.865 a0. b SE-MRCI-ACPF values of ref 22
for (r)V)0 ) 1.865 a0. c Reference 19. d Experimental value of ref
21. e MRCI values of ref 23 for rOH ) 1.95 a0. f Experimental
value of ref 24. g CCSD(T) value of ref 25. h RHF (small
CASSCF) value of ref 26. i CASSCF value of ref 26. j Following
eq 1, the Q2

(2 value of ref 22 has been multiplied by �2.
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The latter matrix elements relate with the calculated expecta-
tion values of the Cartesian multipole moment operators as
follows:

where Ql|m|
( are the real components of the multipole moments,

and |x〉 ) |1+〉 labels the OH(X2Π) electronic wave function
of p ) +1 parity with respect to σxz.

The static and dynamic dipole polarizabilities of Si and
OH have been calculated by means of the linear response
method27 based on the CASSCF wave functions previously
defined. For each atomic and molecular substate of definite
symmetry, the use of the linear response method provides a
set of Cauchy moments, each of which corresponding to a
given Cartesian component of the electric dipole operator
µu, with u ) {x, y, z}. We next use analytical continuation
techniques following the [n, n - 1]R and [n, n - 1]� Padé
approximants procedures defined in ref 28 to get lower and
upper bounds to the dynamic polarizabilities VVRuu(iω), where
V stands for ||ML|(〉 for Si and ||Λ|(〉 for OH. The use of [n,
n - 1]R and [n, n - 1]� Padé approximants led to a fast
convergence of the self-dispersion coefficients C6 )
3/π∫0

∞VVRuu(iω)VVRuu(iω) dω. These self-dispersion coefficients
were computed by means of a Gauss-Legendre quadrature,
using the ωj ) (ωmax/2)(xj + 1) change of variables to
transform the [0, ωmax] interval into the suitable [-1, +1]

interval for the N-point Gauss-Legendre abscissas xj)1,N. The
value of ωmax is chosen sufficiently large such as R(iωmax) ≈
0. With n ) 4 for Si and n ) 6 for OH, the C6 coefficients
corresponding to the lower and upper bounds of the dynamic
polarizabilities are already converged to within less than 1%.
We used as final results the dynamic polarizabilities VVRuu(iω)
yielded by Padé approximants with n ) 8 for Si and n ) 9
for OH, for which the dispersion coefficients are converged
within less than 0.05% for Si and u ) {x, y, z}, and for OH
within 0.03% for u ) {z}, and 0.4% for u ) {x, y}. We
report in Tables 2 and 3 the static and dynamic polarizabilities
at selected values of the imaginary frequency for Si and OH,
together with other literature values. The values correspond
to the Cartesian components VVRuu(iω) associated with a given
substate V of definite symmetry, |0-〉 for Si (3P) and |x〉 )
|1+〉 for OH (X2Π). In the present case, for symmetry reasons,
this limited set of Cartesian components of the polarizability
is sufficient to get the whole set of spherical components
MLML′Rlml′m′ and ΛΛ′Rlml′m′ required to determine the interaction
coefficients. For Si, the procedure used to derive the spherical
components MLML′Rlml′m′ from Cartesian ones is fully equivalent
to that already proposed in ref 9. For OH, we know that the
real components of the multipole moment satisfy Q10

+ ) µz,
Q11

+ ) µx, and Q11
- ) µy. Hence, the dipole polarizabilities

corresponding to multipole moments Ql|m|
( and wave functions

||Λ|(〉 of definite symmetry are directly related to the
Cartesian components, such as xxR1010

++ ) xxRzz, xxR1111
++ ) xxRxx,

and xxR1111
-- ) xxRyy for the |x) state. Using the usual relations

between the spherical and real components of the multipole
moments, Qlm and Ql|m|

( , and OH (X2Π) wave functions, |(1)
and |1(), one obtains the nonzero components of spherical
dipole polarizabilities (see eq 11 of ref 9’s EPAPS):

TABLE 2: Static Dipole Polarizabilities (in a0
3) for Si(3P) and OH(X2Π)

Si(3P) OH(X2Π)

Rzz Rxx Rj ∆R xxRzz
xxRxx

xxRyy Rj ∆R

31.936a 40.358a 37.55a -8.42a 8.699a 6.258a 7.620a 7.525a 1.760a

31.83b 40.40b 37.54b -8.57b 8.751c 6.374c 7.554c 7.560c 1.787c

31.56d 39.97d 37.17d -8.41d 7.053e

31.83f 40.17f 37.40f -8.34f

30.74g 39.44g 36.54g -8.7g

a Linear response values of present work. For OH, calculations are done at the mean geometry (r)V)0 ) 1.865 a0. b CCSD(T) values of ref
29. c SE-MRCI-ACPF values of ref 22 for (r)V)0 ) 1.865 a0. d CCSD(T) values of ref 30. e TDUHF values of ref 31 at rOH ) 1.95 a0.
f CCSD(T) values of ref 32. g CASPT2 values of ref 26.

TABLE 3: Dynamic Dipole Polarizabilities (in a0
3) for Si(3P) and OH(X2Π) and Specific Imaginary Frequency

Si(3P) OH(X2Π)

ω Rzz
a Rxx

a xxRzz
a/xxRzz

b xxRxx
a/xxRxx

b xxRyy
a/xxRyy

b

0.0 31.936 40.358 8.699/8.751 6.258/6.374 7.620/7.554
0.1 28.940 35.009 8.469/8.509 6.074/6.181 7.350/7.267
0.2 22.795 25.743 7.865/7.875 5.680/5.720 6.704/6.579
0.3 17.048 18.349 7.065/7.045 5.200/5.179 5.942/5.787
0.4 12.720 13.301 6.230/6.191 4.694/4.664 5.212/5.062
0.5 9.650 9.918 5.449/5.408 4.205/4.200 4.563/4.448
1.0 3.321 3.328 2.869/2.886 2.424/2.512 2.495/2.527
1.5 1.646 1.644 1.705/1.724 1.515/1.554 1.539/1.558
2.0 0.995 0.990 1.120/1.120 1.022/1.018 1.038/1.024
2.5 0.676 0.667 0.790/0.775 0.730/0.706 0.744/0.712
3.0 0.494 0.483 0.586/0.564 0.544/0.513 0.558/0.520
4.0 0.303 0.288 0.357/0.334 0.332/0.303 0.345/0.308
5.0 0.208 0.191 0.240/0.219 0.222/0.199 0.233/0.202

a Linear response values of present work (see text). For OH, calculations are done at the mean geometry (r)V)0 ) 1.865 a0.
b SE-MRCI-ACPF values of ref 22 for (r)V)0 ) 1.865 a0.

〈(1|Q10|(1〉 ) 〈x|Q10
+ |x〉 ) 〈x|µz|x〉

〈(1|Q20|(1〉 ) 〈x|Q20
+ |x〉 ) 〈x|Θzz|x〉

〈(1|Q2(2|-1〉 ) -√2〈x|Q22
+ |x〉 )

-�2
3

[〈x|Θxx|x〉 - 〈x|Θyy|x〉]

(1)
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where xxRzz, xxRxx, and xxRyy are the values reported in Tables
2 and 3.

As can be seen in Tables 1-3, our calculated values of the
monomers properties lie in good agreement with most of the
literature values. The relative discrepancies are less than 1%
with the most recent ab initio values of the quadrupole moment
Q20

Si and static polarizabilities Ruu
Si of Si, of the dipole moment

Q10
OH, quadrupole moment Q20

OH, and static polarizabilities Ruu
OH

of OH. A spread of 2% is noticed with the Q2(2
OH values of OH

if fixed at rV)0 ) 1.865 bohr. The larger discrepancies (up to
6%) observed for the quadrupole moments Q20

OH and Q2(2
OH of

OH result from the use of different OH intradiatomic distances.
For the dynamic polarizabilities Ruu

OH(iω) of OH with u )
{x, y, z}, literature values lie within 7-9% on average. To
account for such an uncertainty on the monomer properties and
give error bars on the long-range coefficients, we have thus
calculated a second set of coefficients (set B) by selecting
literature values for the monomer moments. For Si, we have
taken the Q20

Si ab initio value of ref 25, evaluated at the CCSD(T)
level with an aug-cc-pV5Z basis set. Static and dynamic
polarizabilities of Si are those calculated in the present work
(set A) since, up to our knowledge, the dynamic quantities are
reported here for the first time. However, the accuracy of the
static polarizabilities can be assessed by comparison with
literature values, and our values obtained for both components
Ruu

Si lie within less than 1% of ab initio values of ref 29 obtained
at the CCSD(T) level with an aug-cc-pVQZ basis set extended
to (17s, 12p, 4d, 3f, 2g). For OH, we have taken the Spelsberg22

values for Q10
OH, Q20

OH, and Q2(2
OH . Furthermore, we have generated

the dynamic polarizabilities from the pseudo-oscillator strengths
and pseudo-energies tabulated by Spelsberg in ref 22 for xxRlml′m′

((

and xyRlml′m′
(- . Those values were computed by means of single-

excitation MRCI calculations (SE-MRCI) within the averaged
coupled pair functional formalism (ACPF) and the basis set of
ref 33.

IV. Interaction Coefficients

The long-range coefficients for the electrostatic, induction,
and dispersion interactions have been evaluated for Si(3P)
+ OH(X2Π) from the knowledge of the permanent multipole
and static and dynamic polarizabilities of each monomer,
discussed in section III. The long-range coefficients ii′jj′VnLbMaMb

(see eqs 5, 9, and 12 of ref 9) are reported in the (LS)
coupling case in Tables 4 and 5 for the electrostatic and
polarization (induction plus dispersion) contributions, re-
spectively, where i or i′ stands for |LSMLMS〉 ≡ |ML〉 for Si(3P)
(since long-range matrix elements vanish unless M′S ) MS

when spin-orbit interactions are neglected), and j or j′ stands
for |ΛΣ〉 ≡ |Λ〉 for OH(X2Π) (long-range matrix elements
vanish unless Σ′ ) Σ). One has to use eqs 4, 8, and 11 of ref
9 to get the related coefficients in the JJ coupling case, i.e.,
in the |JMJ〉 basis for Si and in the doubly degenerate |(Ω〉
basis for OH. In this latter case, the |(Ω〉 set of wave
functions are directly obtained from those in the LS coupling
case by the relations |(Ω〉 ) |(Λ ( Σ〉 or |(Ω〉 ) |(Λ -
Σ〉. The electrostatic coefficients have been tabulated for the
dipole-quadrupole (n ) 4) and quadrupole-quadrupole (n

) 5) interactions, the dispersion coefficients for the dipole-
induced-dipole-induced (n ) 6) interactions and the induc-
tion coefficients for dipole-dipole-induced interaction (n )
6). Notice that the induction coefficients vanish for off-
diagonal matrix elements |Λ - Λ′| ) 2, due to the restriction
given by |Λ - Λ′| e lb, where lb ) 1 for a dipole moment
Qlbmb

.
To the best of our knowledge, no long-range coefficients have

been determined for the Si + OH system up to now. This work
is thus the first determination and no comparison is possible
but estimated values of long-range coefficients for the dispersion
and induction contributions can be retrieved when one considers
state-averaged quantities (the electrostatic contribution cancels
for state-averaged quantities). Indeed, in such a case, the long-
range polarization energies take a form similar to that derived
for closed-shell atom-diatom interacting species.34,35 The
dispersion energy for the dipole-induced dipole-induced case
(n ) 6) simplifies as

where the isotropic long-range coefficient written

and the anistropic coefficient is

Ontheright-handsideofeqs4and5, theLondonapproximation36,37

is used to evaluate the dispersion coefficients, where ηi are the
ionization energies of each species. The average static polar-
izabilities of Si and OH are given in Table 2, and the anisotropic
polarizability of OH is here defined as ∆ROH ) xxRzz - 1/2[xxRxx

+ xxRyy]. Using the values of Table 2, together with the London
approximation and tabulated ionization energies38 to evaluate
the dispersion coefficients, we get C6,disp

0 ) 78.07/78.42 au and
C6,disp

2 ) 6.09/6.18 au for the sets A/B. Since the state-averaged
coefficients of eqs 4 and 5 are formally equivalent to those
obtained by summing over diagonal matrix elements (Ma ) Mb

) 0) of the long-range dispersion coefficients ii′jj′VnLbMaMb
, we

can retrieve state-averaged quantities from the tabulated values
ii′jj′V6,000 and ii′jj′V6,200 of Table 5. The results obtained for the
sets A/B, i.e., C6,disp

0 ) 86.13/85.97 au, and C6,disp
2 ) 6.61/6.74

au, are found to be in rather good agreement with the values
yielded by the London approximation. The state-averaged
induction energy for the dipole dipole-induced case (n ) 6)
takes a form similar to eq 3, with C6,ind

0 ) C6,ind
2 ) RjSi(Q10

OH)2,
and contribution of the quadrupole moment Q20

OH cancels for
state-averaged quantities. Using the dipole moment and static
polarizabilities values of Tables 1 and 2, we get C6, ind

0 ) 16.17/
15.68 au for the sets A/B. The state-averaged coefficients
retrieved from the tabulated coefficients ii′jj′V6,000

ind and ii′jj′V6,200
ind

of Table 5 provide an identical value.

(1(1R1010 ) xxRzz

(1(1R1(11-1 ) - 1
2

[xxRxx +
xxRyy] )

(1(1R1-11(1

(1-1R1(11(1 ) -[xxRxx -
xxRyy]

(2)

Edisp(R,γ) ) - 1

R6
[C6,disp

0 + C6,disp
2 P2(cos γ)] (3)

C6,disp
0 ) 3

π ∫0

∞
R̄OH(iω) R̄Si(iω) dω ≈ 3

2

ηOHηSi

ηOH + ηSi
R̄OHR̄Si

(4)

C6,disp
2 ) 1

π ∫0

∞
∆ROH(iω) R̄Si(iω) dω ≈

1
2

ηOHηSi

ηOH + ηSi
∆ROHR̄Si (5)
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The differences between the set A and set B coefficients
reported in Tables 4 and 5 for the electrostatic and induction
interactions result directly from the uncertainty in the multipole
moments and static polarizabilities, and, in the present case,
especially from the uncertainty on the quadrupole moment of
OH. Indeed, the discrepancies are less than 1% between the
monomer properties of sets A and B for Q20

Si , Q10
OH, and Q20

OH,
while they rise up to 3% for Q2(2

OH . Similar discrepancies are
observed on the related long-range V4

elec (∼1%), V5
elec (0.4%),

and V6
ind (3%) coefficients. The discrepancy is around 3% for

the state-averaged coefficient C6,ind
0 . For the dispersion contribu-

tion, the discrepancies between the sets A and B are not so
directly related to the averaged uncertainty on the dynamic
polarizabilities of OH (dynamic polarizabilities Ruu

Si (iω) are
identical in sets A and B). The uncertainties for Ruu

OH(iω) are
within 7-9% on average (less than 1% for ω ) 0), and we
attain an overall agreement of 2-4% for the diagonal (Mb ) Λ
- Λ′ ) 0) V6

disp coefficients, while the agreement is around
10-20% for the nondiagonal (Mb ) (2) V6

disp coefficients.

V. Behavior of the Long-Range Multipolar Potentials

The full (doubly degenerate) 18 × 18 multipolar potential
matrix is built up in the |JMJ) |ΛΣ) coupled basis, where each
matrix element is evaluated as a sum of electrostatic, induction,
dispersion, and spin-orbit energies following:

The spin-orbit contribution is zero for nondiagonal elements,
and the nonzero diagonal matrix elements are written as a
function of the fine structure splittings δOH and δJ

Si. Sorting the

18 spin-orbit matrix elements in a descending order of energy
from top to bottom shows the upper 9 states |JMJ〉|ΛΣ〉
correspond to the OH(2Π1/2) doubly degenerate states |Λ ) (1,
Σ ) -1/2〉 and the lower 9 states |JMJ〉|ΛΣ〉 correspond to the
OH(2Π3/2) doubly degenerate states |Λ ) (1, Σ ) (1/2〉. Then,
within each group of 9 states, by sorting the |JMJ〉 atomic states
in the energetic decreasing order, Si(3P2), Si(3P1), and Si(3P0),
with MJ indices running from top to bottom as MJ ) J to MJ )
-J, the upper 9 spin-orbit matrix elements are sorted as
follows: {δ2

Si + δOH, δ2
Si + δOH, δ2

Si + δOH, δ2
Si + δOH, δ2

Si +
δOH, δ1

Si + δOH, δ1
Si + δOH, δ1

Si + δOH, δOH}, and the lower 9
matrix elements are sorted as {δ2

Si, δ2
Si, δ2

Si, δ2
Si, δ2

Si, δ1
Si, δ1

Si,
δ1

Si, 0}. The experimental fine structure splitting values have
been used in the present work: δOH ) 139.7 cm-1,39 δ1

Si ) 77.115
cm-1 and δ2

Si ) 223.157 cm-1.38 The latter spin-orbit matrix
elements can be used together with the tabulated values for the
ii′jj′VnLbMaMb

matrix elements to build up the multipolar potential
matrix for Si(3P) + OH(X2Π).

Before discussing the results obtained for the full multipolar
potentials, we first compare the long-range nonrelativistic
potentials (neglecting the spin-orbit interaction) with ab initio
PESs provided by supermolecular calculations. The ab initio
potentials were evaluated at the CASSCF level to get size-
consistent energies, which is crucial for behavior of the
potentials at long range. As no dynamical correlation is
considered in the CASSCF calculations, the resulting ab initio
potentials must be compared with potentials including the
electrostatic and induction contributions only (without disper-
sion). To this end, the multipolar (electrostatic+induction)
potential matrix has been computed from the tabulated values
ii′jj′VnLbMaMb

of Tables 4 and 5, and subsequently diagonalized.
The supermolecular calculations have been carried out within
the C2V symmetry group for the linear configurations (γ ) 0

TABLE 4: Long-Range Non-Zero ii′jj′V4LbMaMb and ii′jj′V5LbMaMb Electrostatic Coefficients (in au) for the Si(3P) + OH(X2Π)
Interaction

ii′jj′V4
elec ii′jj′V5

elec

ML M′L ΛΛ′ Ma Mb Lb set A set B Ma Mb Lb set A set B

(1 (1 (1 ( 1 0 0 1 -3.27 -3.24 0 0 2 -13.10 -13.11
(1 0 (1 ( 1 (1 0 1 3.27 3.24 (1 0 2 15.12 15.14
(1 -1 (1 ( 1 (2 0 1 0.00 0.00 (2 0 2 -5.35 -5.35
0 (1 (1 ( 1 -1 0 1 -3.27 -3.24 -1 0 2 -15.12 -15.14
0 0 (1 ( 1 0 0 1 6.63 6.48 0 0 2 26.20 26.22
(1 (1 (1 - 1 0 (2 2 12.49 12.18
(1 0 (1 - 1 (1 (2 2 -14.42 -14.06
(1 -1 (1 - 1 (2 (2 2 5.10 4.97
0 (1 (1 - 1 -1 (2 2 14.42 14.06
0 0 (1 - 1 0 (2 2 -24.99 -24.36

TABLE 5: Long-Range Non-Zero ii′jj′V6LbMaMb Dispersion and Induction Coefficients (in au) for the Si(3P) + OH(X2Π)
Interaction

ii′jj′V6
disp ii′jj′V6

ind

ML M′L ΛΛ′ Ma Mb Lb set A set B ML M′L ΛΛ′ Ma Mb Lb set A set B

(1 (1 (1 ( 1 0 0 0 87.86 87.71 (1 (1 (1 ( 1 0 0 0 16.79 16.27
(1 (1 (1 ( 1 0 0 2 7.03 7.16 (1 (1 (1 ( 1 0 0 2 17.98 17.44
(1 0 (1 ( 1 (1 0 2 -0.48 -0.49 (1 0 (1 ( 1 (1 0 2 -2.09 -2.03
(1 -1 (1 ( 1 (2 0 2 0.34 0.35 (1 -1 (1 ( 1 (2 0 2 1.48 1.44

0 (1 (1 ( 1 -1 0 2 0.48 0.49 0 (1 (1 ( 1 -1 0 2 2.09 2.03
0 0 (1 ( 1 0 0 0 82.67 82.51 0 0 (1 ( 1 0 0 0 14.96 14.51
0 0 (1 ( 1 0 0 2 5.78 5.89 0 0 (1 ( 1 0 0 2 12.55 12.17

(1 (1 (1 - 1 0 (2 2 5.089 4.195
(1 0 (1 - 1 (1 (2 2 -0.403 -0.342
(1 -1 (1 - 1 (2 (2 2 0.285 0.242

0 (1 (1 - 1 -1 (2 2 0.403 0.342
0 0 (1 - 1 0 (2 2 4.042 3.306

Etot
JMJJ'M'JΛΣΛ′Σ′ ) Eelec

JMJJ'M'JΛΣΛ′Σ′ + Edisp
JMJJ'M'JΛΣΛ′Σ′ +

Eind
JMJJ'M'JΛΣΛ′Σ′ + ESO

JMJJ'M'JΛΣΛ′Σ′ (6)
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and 180°), and the Cs point group in other cases (Figure 2).
The CASSCF calculations have been conducted for the doublet
adiabatic states dissociating into Si(3P) + OH(X2Π). At linear
geometries, they correspond to the four states of C∞V symmetry,
2Σ+, 2Σ-, 2Π, and 2∆, or to the six nondegenerate states (1-3)2A′
and (1-3)2A′′ within the Cs symmetry group. Since exchange
interaction is negligable, the doublet states are degenerate with
their quartet counterparts 4Σ+, 4Σ-, 4Π, and 4∆ at long-range.
The CASSCF calculations have been carried out with the full
valence active space built up with 11 electrons distributed in 9
molecular orbitals, (5σ-9σ, 2π-3π) corresponding to the (3s,
3p) shells of Si, (2s, 2p) shells of O, and 1s shell of H. The
first six inner-shell orbitals were kept doubly occupied during
the optimization, and a state-averaged procedure with equal
weights for the 6 doublet states dissociating into Si(3P) +
OH(X2Π) has been employed. The same basis sets as employed
for the monomer calculations were used, i.e., aug-cc-pVQZ for
Si and aug-cc-pV5Z for O and H. The resulting energies have
been corrected for the basis set superposition error using the
Boys and Bernardi counterpoise method.40 To this end, each
substate component of the fragments Si(3P) and OH(2Π) has
been calculated within a full valence state-averaged CASSCF
scheme, using the same symmetry group and the same basis
set as employed for the SiOH molecular complex. The reference
for the interaction energies has been chosen at a R value
sufficiently large (200 bohr) such as the equality E(SiOH) )
E(Si) + E(OH) is exactly satisfied for all states under study.

We present in Figures 1 and 2 the full multipolar potentials
for the eight degenerate (12 nondegenerate) adiabatic states 2,4Σ+,
2,4Σ-, 2,4Π, and 2,4∆ dissociating into Si(3P) + OH(X2Π) at linear
geometries. The potentials are plotted as a function of the
intermolecular distance R for γ ) 0° in Figure 1a (Si-HO
collinear approach) and for γ ) 180° in Figure 1b (Si-OH
collinear approach), as well as a function of the angle of
approach γ at R ) 25 bohr in Figure 2. As can be seen in Figure
1, when spin-orbit interactions are neglected, the 2,4Σ+, 2,4∆,

and 2,4Σ- states form one group of quasi-degenerate states with
an attractive behavior at γ ) 0° and with a repulsive behavior
at γ ) 180°, while the 2,4Π states display opposite behavior.
Such a feature had already been observed in the case of the
C(3P) + OH(X2Π) long-range interactions.9 Furthermore, we
compare in those figures the electrostatic + induction restricted
multipolar energies with the supermolcular ab initio ones
calculated at the CASSCF level. A good quantitative agreement
is attained, the discrepancies being of the order of a few
wavenumbers at the shortest intermolecular separations dis-
played in Figure 1. The same agreement is observed for all
angles of approach, as can be seen in Figure 2. The remaining
differences between the multipolar and ab initio potentials may

Figure 1. Full multipolar (continuous line) or electrostatic plus induction only (dashed line) potential energies (in cm-1) for the eight degenerate
(12 nondegenerate) nonrelativistic long-range Si(3P) + OH(X2Π) states as a function of the intermolecular distance R (in bohr) for linear geometries
of the complex at γ ) 0° (a) and γ ) 180° (b). In addition, ab initio supermolecular CASSCF values are shown for comparison: (a) X2,4A′(2, 4Σ+)
(circle), 22,4A′ - 12,4A′′(2, 4∆) (square), 22,4A′′(2, 4Σ-) (cross), 32,4A′ - 32,4A′′(2, 4Π) (triangle); (b) (X2,4A′ - 12,4A′′(2, 4Π) (square), 22,4A′(2, 4Σ+)
(circle), 32,4A′ - 22,4A′′(2, 4∆) (triangle), 32,4A′′(2, 4Σ-) (cross).

Figure 2. Full multipolar (continuous line) or electrostatic plus
induction only (dashed line) potential energies (in cm-1) for the
eight degenerate (12 nondegenerate) nonrelativistic long-range Si(3P)
+ OH(X2Π) states as a function of the OH bending angle, γ (in
degree), at intermolecular distance R ) 25 bohr. In addition, ab
initio supermolecular CASSCF values are shown for comparison:
X2,4A′(2, 4Σ+-2,4Π) (square), 22,4A′(2, 4∆-2,4Σ+) (circle), 32,4A′-
(2, 4Π-2,4∆) (triangle up), 12,4A′′(2,4∆-2,4Π) (diamond), 22,4A′′-
(2, 4Σ--2,4∆) (triangle down), 32,4A′′(2, 4Π-2,4Σ-) (cross).
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result from the use of different active spaces between the two
calculations, from the static correlation included in the CASSCF
calculations and/or from higher multipolar terms omitted in the
multipolar expansion. To keep the calculations tractable, the
active space employed in supermolecular calculations has been
considerably reduced in regard to the active space used for the
momoners properties. As a final comment, it is worth noting
that the inclusion of the dispersion contribution changes
drastically the feature of the excited states as observed in Figure
1b for the 2,4Σ+, 2,4∆, and 2,4Σ- states and the Si-OH collinear
approach. At short-range, the dispersion contribution compen-
sates the repulsive electrostatic interaction, leading to the
formation of small potential energy barriers around 10-12 bohr.
For the Si-OH approach, the attractive dispersion effect is out
of range of Figure 1a for the 2,4Π states (presumably observable
at shorter distances).

The full multipolar potentials including spin-orbit splittings,
obtained by diagonalization of the full multipolar potential
matrix, are displayed for the 18 spin-orbit states of Si(3P) +
OH(X2Π) as a function of the intermolecular distance R for γ
) 0° in Figure 3a (Si-HO approach) and γ ) 180° in Figure
3b (Si-OH approach), as well as a function of the Jacobi angle
γ at R ) 10 bohr in Figure 4. In these figures, the states are
labeled according to the value of the quantum number Ωtot )
MJ + Λ + Σ, which is well-defined for linear geometries of
the complex. Because the spin-orbit interaction for the Si(3P)
atom is much larger than for C(3P), its effects are increased
and will concern the higher temperature range (up to 600 K).
Otherwise, the complexity and the general behavior of the
potentials are similar to those of the C(3P) + OH(X2Π) case,9

though the energetic order of the asymptotic spin-orbit states
is different. Furthermore, the two asymptotes, 3P1 + 2Π1/2 and
3P2 + 2Π3/2 lie very close in energy, the former being lower
than the latter, and that increases the density of states in this
energy range. For both angles of approach, the relativistic
potentials display several avoided crossings, and as a result of
the dispersion contribution, potential energy barriers are ob-
served for the linear Si-OH approach. At short distances, once
the spin-orbit splitting becomes smaller than the interaction
energies, the relativistic states converge toward the two groups

of nonrelativistic states 2Stot+1Λtot (Λtot ) ML + Λ and Stot ) S
+ Σ) displayed in Figure 1. From the potentials displayed in
Figure 4 at R ) 10 bohr, we observe a quasi-isotropic potential
for the ground state whereas the anisotropy is much more
pronounced for the excited states. This was already the case
for the ground nonrelativistic state (see Figure 2), but a slight
preference now appears for the approach of the silicon atom on
the hydrogen side of OH, while the oxygen side is preferred
when spin-orbit splittings are neglected.

VI. Conclusion

We have calculated the long-range intermolecular potentials
of the 18 spin-orbit states resulting from the interaction between
two open-shell systems, Si(3P) and OH(X2Π). The diatomic OH
has been kept fixed at its ground vibrational state averaged
distance 〈r〉V)0 ) 1.865 bohr. The long-range interaction
potentials are thus two-dimensional potential energy surfaces
(PESs) that depend on the intermolecular distance R and the
angle γ between R and r. The potential matrix elements have
been evaluated from the perturbation theory up to second order

Figure 3. Full multipolar potential energies (in cm-1) including monomer spin-orbit splittings for the 18 long-range Si(3P) + OH(X2Π) states as
a function of the intermolecular distance R (in bohr) at γ ) 0° (a) and γ ) 180° (b). States are characterized by their Ω value: 7/2 (continuous), 5/2

(dotted), 3/2 (dot-dashed), or 1/2 (short dashed).

Figure 4. Full multipolar potential energies (in cm-1) including
monomer spin-orbit splittings for the 18 long-range Si(3P) + OH(X2Π)
states as a function of the OH bending angle, γ (in degree), at
intermolecular distance R ) 10 bohr.
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using a two-center expansion of the Coulombic intermolecular
potential operator with a diabatic basis product of unperturbed
monomer electronic wave functions. A multipolar expansion
of the potential is further expressed as a series of terms varying
in R-n. The determination of the expansion coefficients relies
on the knowledge of monomer properties such as the permanent
multipole moments, static and dynamic polarizabilities which
have been carefully calculated or selected from literature values.
The interaction potentials have been evaluated as a sum of
electrostatic energies, which include the dipole-quadrupole (in
R-4) and quadrupole-quadrupole (in R-5) interactions, as well
as dispersion and induction energies, which include the dipole-
induced-dipole-induced (dispersion) and dipole-dipole-induced
(induction) interactions, i.e., limited to the terms varying in R-6.
The spin-orbit effects have been included by accounting for
the experimental fine-structure splittings of the monomers. The
diagonalization of the 18 × 18 full potential matrix generates
the adiabatic long-range PESs. A comparison between present
potentials and their ab initio counterparts obtained at the
CASSCF level within a supermolecular formalism was made,
and a good agreement between both approaches is observed.
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